<tbody id="fd6og"><noscript id="fd6og"></noscript></tbody>

    1. <rp id="fd6og"><object id="fd6og"><blockquote id="fd6og"></blockquote></object></rp>
      <rp id="fd6og"><object id="fd6og"><input id="fd6og"></input></object></rp>
      <button id="fd6og"></button><em id="fd6og"></em>

      手机APP下载

      您现在的位置: 首页 > 口译笔译 > 英汉翻译素材 > 生态与环境 > 正文

      2030年前碳达峰行动方案(6)(中英对照)

      来源:可可英语 编辑:Villa ?  可可英语APP下载 |  可可官方微信:ikekenet

      6. The action for promoting circular economy in carbon mitigation purpose

      (六)循环经济助力降碳行动。

      Focusing on resource utilization as a key factor, we will push ahead with the development of the circular economy, and work toward an all-around improvement in the efficiency of resource utilization. In the process, we will fully leverage synergistic effects between efforts to reduce resource consumption and cut carbon emissions.

      抓住资源利用这个源头,大力发展循环经济,全面提高资源利用效率,充分发挥减少资源消耗和降碳的协同作用。

      (a) Pushing industrial parks to develop in a circular manner

      1.推进产业园区循环化发展。

      Setting our sights on enhancing the productivity of resources and raising the rate at which they are recycled, we will optimize the spatial layout of industrial parks, and retrofit these parks to facilitate circular production. Circular production in enterprises and circular organization of industries in these parks will be encouraged as well, and arrangements will be made for enterprises to conduct retrofits for clean production. We will promote the comprehensive utilization of waste, cascading use of energy, and circular use of water resources. To be specific, we will facilitate the recycling of residual heat and pressure as well as waste gas, liquid, and slag from industrial processes, and actively expand the application of centralized gas and heating supply. We will set up platforms for sharing infrastructure and public services, and strengthen the management of material flow in parks. By 2030, all key industrial parks at the provincial level or above will be upgraded to support circular operations.

      以提升资源产出率和循环利用率为目标,优化园区空间布局,开展园区循环化改造。推动园区企业循环式生产、产业循环式组合,组织企业实施清洁生产改造,促进废物综合利用、能量梯级利用、水资源循环利用,推进工业余压余热、废气废液废渣资源化利用,积极推广集中供气供热。搭建基础设施和公共服务共享平台,加强园区物质流管理。到2030年,省级以上重点产业园区全部实施循环化改造。

      (b) Strengthening the comprehensive use of bulk solid waste

      2.加强大宗固废综合利用。

      We will enhance the comprehensive utilization level and increase the multipurpose utilization rates of mineral resources. We will support the large-scale utilization of waste in manner that maximizes proportion and value with a focus on bulk solid wastes including coal gangue, coal fly ash, tailings, associated minerals, smelting slag, byproduct gypsum, construction refuse, and crop straw, and encourage the use of such waste as a substitute for raw non-metallic minerals and gravel. On the condition of being safe and eco-friendly, we will explore the use of phosphogypsum in improving soil, back filling underground mines, and preparing sub-grade for roads. The recycling of construction wastes will be promoted, and the in-situ reclamation and use of abandoned pavement materials will be widely applied. We will accelerate the recycling of crop straw in a way that maximizes its value by refining systems for purchase, storage, and transportation, while strictly enforcing the burning ban. We will also speed up efforts to carry out demonstration projects for the comprehensive utilization of bulk solid waste. By 2025, the amount of bulk solid waste recycled annually will reach around 4 billion metric tons, rising to about 4.5 billion by 2030.

      提高矿产资源综合开发利用水平和综合利用率,以煤矸石、粉煤灰、尾矿、共伴生矿、冶炼渣、工业副产石膏、建筑垃圾、农作物秸秆等大宗固废为重点,支持大掺量、规?;?、高值化利用,鼓励应用于替代原生非金属矿、砂石等资源。在确保安全环保前提下,探索将磷石膏应用于土壤改良、井下充填、路基修筑等。推动建筑垃圾资源化利用,推广废弃路面材料原地再生利用。加快推进秸秆高值化利用,完善收储运体系,严格禁烧管控。加快大宗固废综合利用示范建设。到2025年,大宗固废年利用量达到40亿吨左右;到2030年,年利用量达到45亿吨左右。

      (c) Refining systems for resource recycling

      3.健全资源循环利用体系。

      We will improve recycling networks for used materials and waste, and put an "Internet +" recycling model into practice, thus realizing the reclamation of renewable resources to the fullest possible extent. We will strengthen the standardized management of industries related to the comprehensive utilization of renewable resources in order to foster industry clusters. We will advance the high-standard construction of modernized centers for recovering mineral resources from urban waste, and promote the clean, standardized, and large-scale use of renewable resources. We will push forward circular utilization of waste from emerging industries such as decommissioned batteries, photovoltaic modules, and rotor blades of wind turbines. We will also drive high-quality development of remanufacturing industries such as auto parts, engineering machinery, and stationery and office equipment. We will expand the use of remanufactured products and products made from recycled resources. By 2025, the total amount of nine major reusable resources including steel scrap, cooper, aluminum, lead, zinc, waste paper, plastic, rubber, and glass recycled will top 450 million metric tons, reaching 510 million by 2030.

      完善废旧物资回收网络,推行“互联网+”回收模式,实现再生资源应收尽收。加强再生资源综合利用行业规范管理,促进产业集聚发展。高水平建设现代化“城市矿产”基地,推动再生资源规范化、规?;?、清洁化利用。推进退役动力电池、光伏组件、风电机组叶片等新兴产业废物循环利用。促进汽车零部件、工程机械、文办设备等再制造产业高质量发展。加强资源再生产品和再制造产品推广应用。到2025年,废钢铁、废铜、废铝、废铅、废锌、废纸、废塑料、废橡胶、废玻璃等9种主要再生资源循环利用量达到4.5亿吨,到2030年达到5.1亿吨。

      (d) Vigorously promoting efforts to reduce and recycle household waste

      4.大力推进生活垃圾减量化资源化。

      We will move steadily ahead with the sorting of household waste, and work faster to establish collection, transportation, and disposal systems for household waste covering all of society, thereby ensuring that all household waste can be discarded, collected, transported, and disposed of in a well-sorted manner. We will intensify efforts to control plastic pollution throughout the entire process from production to recycling, and take action against excessive packaging, so as to reduce the amount of household waste from this source. We will promote incineration of household waste, bring down the proportion of waste disposed in landfills, and develop recycling technology that is tailored to the peculiarities of kitchen waste in China. The recycling of sewage will also be advanced. By 2025, a basic sorting system for urban household waste will be established, with the reclamation rate up to about 60%. By 2030, the sorting system for urban household waste will cover all cities, and the reclamation rate will rise to 65%.

      扎实推进生活垃圾分类,加快建立覆盖全社会的生活垃圾收运处置体系,全面实现分类投放、分类收集、分类运输、分类处理。加强塑料污染全链条治理,整治过度包装,推动生活垃圾源头减量。推进生活垃圾焚烧处理,降低填埋比例,探索适合我国厨余垃圾特性的资源化利用技术。推进污水资源化利用。到2025年,城市生活垃圾分类体系基本健全,生活垃圾资源化利用比例提升至60%左右。到2030年,城市生活垃圾分类实现全覆盖,生活垃圾资源化利用比例提升至65%。

      7. The action for advancing green and low-carbon technology innovation

      (七)绿色低碳科技创新行动。

      We will give full play to the supporting and guiding role of scientific and technological innovation and improve the relevant mechanisms and systems, so as to enhance our innovation capability and accelerate the revolution in green and low-carbon science and technology.

      发挥科技创新的支撑引领作用,完善科技创新体制机制,强化创新能力,加快绿色低碳科技革命。

      (a) Improving innovation mechanisms and systems

      1.完善创新体制机制。

      An action plan will be formulated to ensure that science and technology support and guide China's achievement of peaking carbon dioxide emissions and achieving carbon neutrality. Major R&D and demonstration projects for key technologies related to the achievement of peaking carbon dioxide emissions and achieving carbon neutrality will be set up in national key R&D programs, making use of open competition mechanisms to select the best candidates to lead the projects, and intensifying core technology research for reaching low carbon, zero carbon, and carbon negative. Achievements in green and low-carbon technological innovation will be included in the performance assessments of institutions of universities, scientific and research institutes, and state-owned enterprises. We will boost the principal role of enterprises in innovation, support their participation in major national green and low-carbon science and technology projects, and encourage the sharing of facilities, data, and other resources. A national green technology trade center will be set up to accelerate the commercialization of innovations. The intellectual property rights protection for green and low-carbon technologies and products will be strengthened, and the testing, evaluation, and certification systems for them will be improved.

      制定科技支撑碳达峰碳中和行动方案,在国家重点研发计划中设立碳达峰碳中和关键技术研究与示范等重点专项,采取“揭榜挂帅”机制,开展低碳零碳负碳关键核心技术攻关。将绿色低碳技术创新成果纳入高等学校、科研单位、国有企业有关绩效考核。强化企业创新主体地位,支持企业承担国家绿色低碳重大科技项目,鼓励设施、数据等资源开放共享。推进国家绿色技术交易中心建设,加快创新成果转化。加强绿色低碳技术和产品知识产权?;?。完善绿色低碳技术和产品检测、评估、认证体系。

      (b) Enhancing innovation capability and personnel training

      2.加强创新能力建设和人才培养。

      National laboratories, key national laboratories, and national technology innovation centers related to the realization of peaking carbon dioxide emissions and achieving carbon neutrality will be set up, relevant major national science and technology infrastructure will be planned in advance, and enterprises, universities, and research institutes will be guided in a joint effort to build national green and low-carbon industrial innovation centers. We will develop new approaches in personnel training, encourage institutions of universities to accelerate discipline development and talent training in new energy, energy storage, hydrogen energy, carbon emissions mitigation, carbon sinks, and the carbon emission trading, and establish a group of future institutes of technology, modern industrial institutes, and demonstration energy institutes focusing on green and low-carbon technologies. We will deepen industry-education integration, encourage school-enterprise cooperation in educating students, launch an alliance for industry-education integration on the realization of peaking carbon dioxide emissions and achieving carbon neutrality, and set up a number of national innovation platforms for industry-education integration on energy storage technology.

      组建碳达峰碳中和相关国家实验室、国家重点实验室和国家技术创新中心,适度超前布局国家重大科技基础设施,引导企业、高等学校、科研单位共建一批国家绿色低碳产业创新中心。创新人才培养模式,鼓励高等学校加快新能源、储能、氢能、碳减排、碳汇、碳排放权交易等学科建设和人才培养,建设一批绿色低碳领域未来技术学院、现代产业学院和示范性能源学院。深化产教融合,鼓励校企联合开展产学合作协同育人项目,组建碳达峰碳中和产教融合发展联盟,建设一批国家储能技术产教融合创新平台。

      (c) Boosting application-oriented basic research

      3.强化应用基础研究。

      We will launch a group of major national projects for forward-looking, strategically important cutting-edge technologies with a view to making breakthroughs in low-carbon, zero-carbon, and carbon-negative technological equipment R&D. Focusing on green and smart development and the clean, low-carbon utilization of fossil energy, large-scale utilization of renewable energy, new types of power system, energy conservation, hydrogen energy, energy storage, power batteries, and carbon dioxide capture, utilization, and storage, we will deepen application-oriented basic research. We will step up R&D in advanced nuclear energy technology, particularly cutting edge and disruptive technologies such as controlled nuclear fusion.

      实施一批具有前瞻性、战略性的国家重大前沿科技项目,推动低碳零碳负碳技术装备研发取得突破性进展。聚焦化石能源绿色智能开发和清洁低碳利用、可再生能源大规模利用、新型电力系统、节能、氢能、储能、动力电池、二氧化碳捕集利用与封存等重点,深化应用基础研究?;蟹⑾冉说缂际?,加强可控核聚变等前沿颠覆性技术研究。

      (d) Accelerating the R&D and wider application of advanced practical technologies

      4.加快先进适用技术研发和推广应用。

      We will intensify innovation on technologies, particularly into the safe, stable operation and control of major complex power grids, large wind farms, high-efficiency photovoltaic panels, heavy-duty liquefied natural gas engines, large capacity energy storage, low-cost hydrogen production from renewable energy sources, and low-cost carbon dioxide capture, utilization, and storage; accelerate R&D in basic materials such as carbon fiber, aerogel, and special steel; and shore up our short slab in key spare parts, components, and software. We will broaden the application of advanced, mature green and low-carbon technologies and carry out related demonstrations. We will carry out demonstration projects for whole-process, integrated, and large-scale carbon dioxide capture, utilization, and storage as well as demonstrations for the application of molten salt storage for heat supply and power generation. R&D into hydrogen energy technology and its demonstrations applications will be accelerated, and its large-scale application will be trialed in industry, transportation, and construction.

      集中力量开展复杂大电网安全稳定运行和控制、大容量风电、高效光伏、大功率液化天然气发动机、大容量储能、低成本可再生能源制氢、低成本二氧化碳捕集利用与封存等技术创新,加快碳纤维、气凝胶、特种钢材等基础材料研发,补齐关键零部件、元器件、软件等短板。推广先进成熟绿色低碳技术,开展示范应用。建设全流程、集成化、规?;趸疾都糜敕獯媸痉断钅?。推进熔盐储能供热和发电示范应用。加快氢能技术研发和示范应用,探索在工业、交通运输、建筑等领域规?;τ?。

      重点单词   查看全部解释    
      complex ['kɔmpleks]

      想一想再看

      adj. 复杂的,复合的,合成的
      n. 复合体

      联想记忆
      innovation [.inəu'veiʃən]

      想一想再看

      n. 创新,革新

      联想记忆
      recycle [ri:'saikl]

      想一想再看

      vt. 使再循环,再利用,再制
      vi. 循环<

      联想记忆
      neutrality [nju:'træliti]

      想一想再看

      n. 中立

       
      boost [bu:st]

      想一想再看

      vt. 推进,提高,增加
      n. 推进,增加

      联想记忆
      liquid ['likwid]

      想一想再看

      adj. 液体的,液态的
      n. 液体

       
      mature [mə'tjuə]

      想一想再看

      adj. 成熟的,(保单)到期的,考虑周到的

       
      negative ['negətiv]

      想一想再看

      adj. 否定的,负的,消极的
      n. 底片,负

      联想记忆
      pollution [pə'lu:ʃən]

      想一想再看

      n. 污染,污染物

       
      encourage [in'kʌridʒ]

      想一想再看

      vt. 鼓励,促进,支持

      联想记忆
      ?
      发布评论我来说2句

        最新文章

        可可英语官方微信(微信号:ikekenet)

        每天向大家推送短小精悍的英语学习资料.

        添加方式1.扫描上方可可官方微信二维码。
        添加方式2.搜索微信号ikekenet添加即可。
        新葡新京正规平台